Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562838

RESUMEN

Disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability (SRID). Without functional SynGAP1 protein, individuals are developmentally delayed and have prominent features of intellectual disability, motor impairments, and epilepsy. Over the past two decades, there have been numerous discoveries indicting the critical role of Syngap1. Several rodent models with a loss of Syngap1 have been engineered identifying precise roles in neuronal structure and function, as well as key biochemical pathways key for synapse integrity. Homozygous loss of SYNGAP1/Syngap1 is lethal. Heterozygous mutations of Syngap1 result in a broad range of behavioral phenotypes. Our in vivo functional data, using the original mouse model from the Huganir laboratory, corroborated behaviors including robust hyperactivity and deficits in learning and memory in young adults. Furthermore, we described impairments in the domain of sleep, characterized using neurophysiological data collected with wireless, telemetric electroencephalography (EEG). Syngap1+/- mice exhibited elevated spiking events and spike trains, in addition to elevated power, most notably in the delta power frequency. For the first time, we illustrated primary neurons from Syngap1+/- mice displayed increased network firing activity, greater bursts, and shorter inter-burst intervals between peaks by employing high density microelectrode arrays (HD-MEA). Our work bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate quantitative, translational biomarkers in vivo and in vitro that can be utilized for the development and efficacy assessment of targeted treatments for SRID.

2.
Res Sq ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37790402

RESUMEN

SYNGAP1 is a critical gene for neuronal development, synaptic structure, and function. Although rare, the disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1 -related intellectual disability. Without functional SynGAP1 protein, patients present with intellectual disability, motor impairments, and epilepsy. Previous work using mouse models with a variety of germline and conditional mutations has helped delineate SynGAP1's critical roles in neuronal structure and function, as well as key biochemical signaling pathways essential to synapse integrity. Homozygous loss of SYNGAP1 is embryonically lethal. Heterozygous mutations of SynGAP1 result in a broad range of phenotypes including increased locomotor activity, impaired working spatial memory, impaired cued fear memory, and increased stereotypic behavior. Our in vivo functional data, using the original germline mutation mouse line from the Huganir laboratory, corroborated robust hyperactivity and learning and memory deficits. Here, we describe impairments in the translational biomarker domain of sleep, characterized using neurophysiological data collected with wireless telemetric electroencephalography (EEG). We discovered Syngap1+/- mice exhibited elevated spike trains in both number and duration, in addition to elevated power, most notably in the delta power band. Primary neurons from Syngap1+/- mice displayed increased network firing activity, greater spikes per burst, and shorter inter-burst intervals between peaks using high density micro-electrode arrays (HD-MEA). This work is translational, innovative, and highly significant as it outlines functional impairments in Syngap1 mutant mice. Simultaneously, the work utilized untethered, wireless neurophysiology that can discover potential biomarkers of Syngap1 RI-D, for clinical trials, as it has done with other NDDs. Our work is substantial forward progress toward translational work for SynGAP1R-ID as it bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate multiple quantitative, translational biomarkers in vivo and in vitro for the development of treatments for SYNGAP1-related intellectual disability.

3.
bioRxiv ; 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37546838

RESUMEN

SYNGAP1 is a critical gene for neuronal development, synaptic structure, and function. Although rare, the disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability. Without functional SynGAP1 protein, patients present with intellectual disability, motor impairments, and epilepsy. Previous work using mouse models with a variety of germline and conditional mutations has helped delineate SynGAP1's critical roles in neuronal structure and function, as well as key biochemical signaling pathways essential to synapse integrity. Homozygous loss of SYNGAP1 is embryonically lethal. Heterozygous mutations of SynGAP1 result in a broad range of phenotypes including increased locomotor activity, impaired working spatial memory, impaired cued fear memory, and increased stereotypic behavior. Our in vivo functional data, using the original germline mutation mouse line from the Huganir laboratory, corroborated robust hyperactivity and learning and memory deficits. Here, we describe impairments in the translational biomarker domain of sleep, characterized using neurophysiological data collected with wireless telemetric electroencephalography (EEG). We discovered Syngap1 +/- mice exhibited elevated spike trains in both number and duration, in addition to elevated power, most notably in the delta power band. Primary neurons from Syngap1 +/- mice displayed increased network firing activity, greater spikes per burst, and shorter inter-burst intervals between peaks using high density micro-electrode arrays (HD-MEA). This work is translational, innovative, and highly significant as it outlines functional impairments in Syngap1 mutant mice. Simultaneously, the work utilized untethered, wireless neurophysiology that can discover potential biomarkers of Syngap1R-ID, for clinical trials, as it has done with other NDDs. Our work is substantial forward progress toward translational work for SynGAP1R-ID as it bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate multiple quantitative, translational biomarkers in vivo and in vitro for the development of treatments for SYNGAP1-related intellectual disability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...